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Abstract. We study thermoelectric effects in superconducting nanobridges and demonstrate that the mag-
nitude of these effects can be comparable or even larger than that for a macroscopic circuit. It is shown that
a large gradient of the electron temperature can be realistically created on a nanoscale and the masking
effects due to spurious magnetic fields can be minimised in nanostructures. For these reasons, nanodevices
can provide an interesting possibility to study the thermoelectric effect in superconductors.

PACS. 74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric effects, etc.) –
74.78.Na Mesoscopic and nanoscale systems – 73.63.Rt Nanoscale contacts

1 Introduction

The discrepancy between the theory and experiment con-
cerning the thermoelectric phenomena is a long standing
problem in physics of superconductors. The thermoelectric
phenomena in the superconducting state were first dis-
cussed by Ginzburg [1] as early as 1944 (see also Ref. [2]).
In the presence of a temperature gradient ∇T , there ap-
pears in a superconductor a normal current of the form
given by

jT = −η∇T (1)

where η is the corresponding transport coefficient. As was
pointed out by Ginzburg [1], the normal current is offset by
a supercurrent density js so that the total current in the
bulk of a homogeneous isotropic superconductor should
vanish

jT + js = 0. (2)

This makes impossible standard studies of the thermo-
electric effect in a homogeneous isotropic superconductor.
Ginzburg considered also simply-connected anisotropic or
inhomogeneous superconductors where it is possible to ob-
serve thermoelectric phenomena by measuring the mag-
netic field generated by a temperature gradient.

Theory of the effect was further developed in 1970s [3]
and the thermoelectric coefficient η in equation (2) was
calculated using the Boltzmann equation approach [4].
One of the prediction was that η(T ) is a continuous func-
tion of temperature and at the critical point Tc it ap-
proaches its value of the normal metal η(Tc); this is a
robust feature independent of the mechanism of the quasi-
particle scattering. It was noted in particular that the off-
set supercurrent is related to the phase difference of the
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order parameter of a simple-connected superconductor.
The phase difference can be measured either in supercon-
ducting interferometer or in the loop formed by different
superconductors where a magnetic flux is generated by a
temperature difference. The theoretical development stim-
ulated experimental study of the thermoelectric magnetic
flux (the interferometry measurement has not yet been
performed).

The first thermoelectric flux measurement by
Zavaritsky [5] was in a reasonable agreement with the
existing theory. However, further experiments [6,7]
exhibited temperature-dependent magnetic fluxes some
five order of magnitude larger than predicted by the
theory [3]. Moreover, the experiment [6,7] gives a quite
unexpected temperature dependence of the magnetic
flux Φ near Tc. According to reference [7], it corresponds
to the temperature dependence of the thermoelectric
coefficient η(T ) ∝ (Tc −T )−1/2, in a drastic contradiction
to the theory of reference [3]. So far no explanation has
been suggested for the unexpectedly huge effect and the
mysterious temperature dependence of η.

A possibility to generate a large thermoelectric flux is
discussed in [8] where it is related to the phonon drag ef-
fect near the interface of the two superconductors with
different superconducting gaps. However, the predicted
enhancement factor, the ratio of the Fermi and Debye en-
ergies, is not big enough to bridge the gap between the
experiment [6,7] and the theory [3], to say nothing about
the temperature dependence of the thermoelectric coeffi-
cient.

From the experimental point, the main difficulty is due
to the fact that the thermoelectric effect is small, and one
needs to single it out from various masking effects. The
most obvious one is related to the temperature dependence
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of the magnetic field penetration length [9,10]. As a result,
in the presence of a background magnetic field, the mag-
netic field within the superconductor is temperature de-
pendent. This can mask the genuine thermoelectric effect
which is due to the system being out of equilibrium.

The authors of references [6,7] study the thermoelec-
tric effect in an ingenious device — a torus formed by
a bimetallic superconducting loop. In this geometry, the
thermoelectric magnetic flux is concentrated in the in-
ner space of the torus while the measuring coil is winded
around the torus. The contribution of a background mag-
netic field is minimal in the torus geometry but, in our
opinion, the masking effects may be not excluded com-
pletely: Indeed, the measuring coil is outside the torus
and thus is subjected to any external field penetrating the
insulating gap between the coil and the torus. In an ideal
geometry, the effect would be zero but due to asymmetry
of a real sample, a spurious flux seems to be unavoid-
able. Since the area covered by this gap is essentially a
macroscopic one, a background magnetic field can pro-
duce a significant magnetic flux through the gap which
can be temperature-dependent, in particular, due to the
temperature dependence of the penetration length as is
discussed in references [9,10]. Thus one cannot be sure
that the setup of references [6,7] excludes all the masking
effects originating from the background magnetic field.

It is important to note that later on it was shown that
the co-existence of a temperature gradient and a super-
current leads to variation of the gauge invariant scalar
potential φ; the latter describes the nonequilibrium charge
related to an imbalance between the electron-like and hole-
like excitations [11–14]. In contrast to the thermoelectric
flux, the experimental studies of this effect were in agree-
ment with the theory [14,15].

Note that there is a vast number of papers (see
Refs. [16–27]) where thermoelectric effects in hybrid nan-
odevices including both normal and superconducting met-
als were studied. However we would like to emphasise that
the measured quantity in these experiments was standard
thermoelectric voltage, which vanishes for a superconduct-
ing branch. Thus thermoelectric effects in these studies
originated from normal branches (possibly affected by su-
perconductors through the proximity effects).

For almost three decades, there exist a challenging
problem in the theory of nonequilibrium superconductiv-
ity: how one can reconcile the existing theory with the
experimental data on the thermoelectric magnetic flux re-
ported in references [6,7]?

The goal of the present paper is to discuss an entirely
different, as compared to the former experiments, geome-
try of experiment (see Fig. 1): it includes a superconduc-
tor nanostructure as a part of a superconducting loop. The
thermoelectric current is generated in the nanobridge, and
the current is detected by the measurement of the mag-
netic flux in the loop. As discussed below, the masking
effects due to redistribution of magnetic flux are small
provided the transverse sizes of the wires of the loop are
small compared to the London penetration depth. Due
to development of experimental technique during recent
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Fig. 1. Thermoelectric superconducting loop. The thermo-
electric current is generated in a nanobridge the two banks
of which are kept at different temperatures T1 and T2. The
temperature difference is maintained by local heating of one of
the banks. The bridge is shortcut by a superconducting wire
(film) of size R.

years these experiments seem to be feasible. We believe
that it would be interesting to compare the experimental
data with the theory developed in the present paper. The
comparison, particularly in the vicinity of Tc, may shed
light on the origin and the very existence of a singular-
ity of the thermoelectric transport coefficient observed in
references [6,7].

Experimentally, an advantage of a properly designed
nanostructure is that one is able to create a significant
drop of the electronic temperature on a short distance
(see Appendices A and B for details). Consequently, the
temperature gradients are large so that the intrinsic ther-
moelectric current becomes larger and easier to observe.
To realise such a favourable possibility, the design of the
device must minimise the heat flow in the substrate the
superconducting bridge is deposited on. Large tempera-
ture gradients can be achieved if the substrate is made of
a material with a low thermal conductivity, for instance,
a glass.

On the theoretical side, a re-analysis is needed because
the earlier theory of the thermoelectric effect in supercon-
ductors considered bulk samples. Their sizes have been
assumed to be much larger than the characteristic lengths
such as the London penetration length, and the length at
which the offset supercurrent is generated. When applied
to bulk samples, there is no need to specify and go into de-
tail of the mechanism by which the normal thermoelectric
current is converted into the offset supercurrent. This ap-
proach is valid provided the sample size essentially exceeds
the size of the region where the normal thermoelectric cur-
rent jn is converted into the offset supercurrent.

It is well-known from the microscopic theory [28] that
the conversion occurs via generation of the nonequilibrium
charge of the normal component, the charge imbalance,
and subsequent relaxation of the latter. The charge im-
balance relaxes due to the scattering events where the
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electron-like excitations are scattered into the hole-like
branch of the excitation spectrum and vice verse. The mi-
croscopic mechanism of the branch-mixing, that is, the
charge imbalance relaxation, is known to be the inelastic
scattering, the impurity scattering for anisotropic super-
conductors, and the Andreev reflection provided inhomo-
geneity of the order parameter is present. When the bulk
scattering dominates, the conversion takes place along the
charge imbalance diffusion length Lb, Lb =

√
Dτb, D and

τb being the diffusion constant and the charge imbalance
relaxation time, respectively. For a nanostructure of the
size comparable with the charge relaxation length, the
standard theory of the thermoelectric phenomena (that
assumes local compensation of the thermoelectric current)
is not applicable. Indeed, in this case the normal thermo-
electric current can be offset also by a normal diffusion
current rather than by a supercurrent [28].

Additionally, there are important differences in elec-
trodynamics of superconducting nanostructures. In par-
ticular, it is related to the so-called kinetic inductance Lk

Lk =
Lλ2

L

S
. (3)

Here λL is the London penetration length, L is the wire
length while S is the wire cross-section. In the case of a
nanobridge, the inductance Lk, which is proportional to
S−1, may be larger than the magnetic inductance of the
thermoelectric loop for small enough values of S. In this
case, the local compensation of the current in equation (2)
turns out to be energetically unfavourable and the electro-
dynamical part of the theory requires a revision too.

In what follows we will develop a theory of thermo-
electric effect in superconducting nanostructures. It will
include the above kinetic and electrodynamical effects.

2 Thermoelectric current

To establish notation we first briefly overview electrody-
namics of superconductors in the presence of the temper-
ature gradient.

The total electric current density, j = js +jn, is a sum
of the supercurrent js, and normal jn, components. The
supercurrent reads

js =
c2

4πeλ2
L

ps (4)

where ps is the superfluity momentum,

ps =
�

2
∇χ − e

c
A, (5)

χ and A being the phase of the order parameter and the
vector potential, respectively.

The normal current density

jn = jT + jD, (6)

is a sum of the thermoelectric current jT , and the diffusion
component jD, related to the charge imbalance specified
by the gauge invariant potential φ,

φ =
�

2e
χ̇ + ϕ, (7)

ϕ being the scalar potential.
In the vicinity of the critical temperature Tc the dif-

fusion current jD = −σ∇φ is proportional to the nor-
mal state conductance σ, and the thermoelectric current
jT = −η∇T is controlled by the normal state thermoelec-
tric coefficient η.

2.1 Diffusion limit

Consider two superconducting banks connected by a nar-
row wire of the length L and cross-section S (see Fig. 1).
The transverse sizes of the wire are assumed to be much
smaller than the London penetration length λL. In this
case, the current is distributed homogeneously within the
wire cross section, and the problem is one dimensional.
Denote by x the coordinate along the wire and choose
the origin in the middle of the wire. We analyse a diffu-
sive wire and assume that the temperature varies linearly
along the wire, its values at the banks being TL and TR.
Note that the thermoelectric current is considered a con-
stant equal to −η∇T in the wire and zero in the banks.
This assumption holds for 3D structures where both the
temperature gradient and electric current density quickly
decay within the contact. Naturally, we assume that the
thickness of the wire is much smaller than the thicknesses
of the banks.

The potentials ps and φ are found from the continu-
ity equation div j = 0, and the equation which describes
transformation of the normal current into supercurrent
that results in the following equation for φ in the wire
(see, for instance, Ref. [4])

∇2φ − φ

L2
b

= 0. (8)

Here τb is the charge imbalance relaxation time while Lb =√
Dτb is the charge imbalance relaxation length [29]. If the

banks are made of superconductors with different values
of the gap equation (8) requires a boundary condition [30]
to account for the Andreev reflection at the interface. The
latter plays the role of a surface mechanism of the charge
imbalance relaxation.

The boundary condition to equation (8) rather gener-
ally takes the form [30]

1
σ

jn

∣
∣
∣
∣
x=±L/2

= ± 1
A φ

∣
∣
∣
∣
x=±L/2

(9)

where jn is the x-component of the normal charge current
density in equation (6), and A is an effective relaxation
length controlled by the Andreev reflection at the wire-
bank interface as well as the imbalance relaxation rate in
the banks.
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In the present paper, we are interested in the opposite
limit of a short wire, L � Lb. The potential difference in
this limit is

∆φ =
jT

σ

1
1

2A +
1
L

. (10)

For a short enough wire,

L < A, (11)

we obtain
∆φ ∼ η

σ
∆T. (12)

In this case of a short superconducting wire, the thermo-
electric potential difference ∆φ is of the order of that in
the normal state. In a short wire, the supercurrent is ho-
mogeneous,

js = j0 − jT
L

2A + L
, (13)

where, as above, j0 is the total electric current through
the wire.

2.2 Ballistic bridge

When we studied the charge imbalance in the previous
section, we have exploited the diffusive approximation.
However, the largest values of jT correspond to the largest
values of the mean quasiparticle free path within the wire.
So one expects the largest effect for a ballistic bridge. In
this case one can estimate the quasiparticle thermoelec-
tric current with the help of a procedure similar to the
one used in reference [31]. Namely, one has in mind that
the quasiparticle distribution function within the ballistic
bridge is formed by the quasiparticles entering the bridge
from the banks. One also notes that the distribution func-
tion is constant along the quasiparticle trajectory while
the quasi-equilibrium distribution functions of the left and
right banks correspond to different temperatures (TL and
TR, respectively). Thus for the quasiparticle distribution
function FB , within the bridge one has

FB = θ

(

vx
ξ

ε

)

F (TL) + θ

(

−vx
ξ

ε

)

F (TR). (14)

Here vx is the component of the electron velocity along
the bridge direction, and F (TL,R) stand for the equilib-
rium distribution function corresponding to the tempera-
ture TL,R. We have taken into account that the (group)
quasiparticle velocity differs from the “bare” electron ve-
locity by a factor ξp/εp = ξp/

√

ξ2
p + ∆2, ξp being the ki-

netic energy counted from the Fermi energy, and ∆ being
the superconductor energy gap. The normal thermoelec-
tric current density for the distribution function given by
equation (14) reads

jT = 2e

∫
d3p

(2π�)3
vxFB .

As usual in the theory of thermoelectric phenomena, the
contributions of electrons and holes to the current tend to
cancel, and the net effect is sensitive to details of the band
structure and to the energy dependence of the density
of states, in particular. At temperatures T near Tc the
order of magnitude of the thermoelectric current can be
estimated as

jT ∼ evF n
(T 2

L − T 2
R)

ε2
F

, (15)

where vF and εF are the Fermi velocity and energy, respec-
tively, and n is the electron density. For a rough estimate,
assume that the temperature difference is comparable to
Tc. In this case,

jT ∼ envF

(
Tc

εF

)2

. (16)

Thus a presence of a temperature drop at the contact be-
tween two superconducting banks leads to formation of the
thermoelectric current through the nanobridge. The order
of magnitude of the current can be evaluated according
to equation (16). The total thermoelectric current, IT , is
given by IT = jT S where S is the area of the bridge cross-
section.

3 Thermoelectric flux

As we have discussed above, we study a nanostructure
(Fig. 1) that consists of a superconducting bridge with
a thickness and a width smaller than the London pen-
etration depth λL. The bridge joins two banks made of
the same superconductor (with critical temperature Tc1

and a thickness smaller than λL). By means of a point-
like heating, the banks are kept at different temperatures.
We assume that the bridge region carrying thermoelectric
current IT is short-circuited by superconducting branch
with sizes larger than λL forming a loop of the linear size
R. The behaviour of the system is different for the two
limiting cases: a) R � Lb; b) R � Lb.

We start our analysis with the first one, that is the
case when the charge imbalance relaxation length Lb is
much shorter than the size of the system. Such a case can
be realised in particular if the near-contact region at least
for one of the banks is covered by a superconductor with a
larger gap leading to effective imbalance relaxation due to
Andreev reflections. If the circuit is simple-connected the
thermoelectric current is compensated by the supercurrent
created due to the Andreev reflection or bulk mechanisms
of the charge imbalance relaxation. Thus the decay of the
normal thermoelectric current is locally compensated by
the supercurrent.

The situation becomes different if the circuit is not
simple-connected, i.e., when another branch (made, for in-
stance, of the material with a larger Tc) closes the loop. In
this case, the net electric current through the bridge, being
a sum of the normal thermoelectric and superconducting
components, may be finite. Indeed, the charge current con-
tinuity is maintained by the supercurrent Is through the
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branch closing the loop: Is is actually the electric current
circulating in the loop while (Is−IT ) is the superconduct-
ing component of the net current through the bridge. The
circulating current Is can be readily evaluated minimising
the total energy W of the system. The latter is given by
the following expression,

W =
1
2
(IT − Is)2Lk +

1
2
I2
sL. (17)

The first term originates from the kinetic energy of su-
perconducting electrons in the bridge, Lk being the well-
known kinetic inductance given by equation (3). The sec-
ond term in equation (17) is the energy of magnetic field
created by the circulating current Is, and L is the induc-
tance of the loop, which is close to the geometrical in-
ductance of the macroscopic branch. Minimising W with
respect to Is, one obtains

Is = IT
Lk

Lk + L (18)

and, thus the thermoelectric magnetic flux is

ΦT = IT
LkL

Lk + L . (19)

The flux ΦT is controlled by the smaller of the inductances
in question.

Note that if Lk � L, ΦT does not depend on L and
is estimated as

ΦT = ITLk ∼ IT
Lλ2

L

S
. (20)

In the dirty limit, the penetration depth λL is related to
its value in the bulk of a pure material as

λ2
L = λ2

0(ξ0/le)

where ξ0 ∼ vF /∆ is the coherence length, and le is the
electron elastic mean free path. As it can be seen, this
result agrees with the physical picture considered in earlier
papers [3,6] where it is assumed that the thermoelectric
current is almost completely offset by the supercurrent.

However, the situation is qualitatively different if
Lk � L, a condition which can be realistically met
for a nanoscale bridge. Indeed, assuming L ∼ √

S and
L ∼ le ∼ 10−6 cm, for λ0 ∼ 10−5 cm, ξ0 ∼ 10−4 cm,
one obtains Lk ∼ 10−2 cm. This means that the kinetic
inductance Lk may be comparable to the magnetic ge-
ometric inductance L ∼ R even for a relatively large,
nearly macroscopic loop. In this case, the normal ther-
moelectric current generated by the bridge is non-locally
short-circuited by the supercurrent through the macro-
scopic branch rather than being offset locally by the su-
percurrent. For this limit, one has from equation (19):

ΦT = ITL. (21)

Despite the absence of the current cancellation within the
bridge, the flux through the loop is Lk/L times smaller

than for the situation considered previously [3,6]. At the
same time, the magnetic field within the structure practi-
cally coincides with its value for a normal metal structure.
Correspondingly, it can be much larger than for the ther-
moelectric effect in macroscopic circuits. Indeed, assuming
that the inductance L is of the order of the linear size of
the circuit R, our estimates for the magnetic induction
from equations (20), and (21) are

BT ∼ IT
Lk

L2
, Lk � L (22)

and
BT ∼ IT

L , Lk � L. (23)

Thus the “thermoelectric” magnetic field is the larger the
smaller is L and is much larger for the regime Lk > L
than for a “macroscopic”regime considered earlier in ref-
erences [3,6]. We believe that this factor significantly sup-
presses a possible role of masking effects.

In the limiting case (b), where the charge imbalance
length Lb is much larger than the size of the system
(R < Lb), the quasiparticle thermoelectric current is not
converted into a supercurrent but short-circuited by the
normal current through the closing branch (as it occurs
in the normal metal thermoelectric circuits). The normal
charge current in the loop generates a magnetic flux which
in turn generates a circulating supercurrent Ic in the di-
rection opposite to the normal current. In this case, the
energy,

W = I2
sLk/2 + (IT − Is)2L/2,

is built of the supercurrent kinetic energy I2
sLk/2 and the

magnetic energy (IT − Is)2L/2. Minimising W , one gets

Is = IT
L

L + Lk
,

and the total thermoelectric flux, ΦT = (IT −Ic)L, is again
given by equation (19). Therefore, the thermoelectric flux
ΦT is completely controlled by the normal component pro-
vided Lk > L.

Let us estimate the largest possible values of ΦT which
can be realised for large L. We have

ΦT ∼ IT
Lλ2

S
(24)

where L and S are the bridge length and cross-section area
respectively.

Correspondingly,

ΦT ∼ envF

(
T

µ

)2
Lλ2

0ξ0

le
. (25)

In what follows we will assume that all the sizes of the
bridge are of the same order while one should also put
le ∼ L. Assuming T/µ ∼ 10−4 (T ∼ 1 K), λ2 ∼ 10−10 cm2,
ξ0 ∼ 10−4 cm one has ΦT ∼ 10−3Φ0.

For smaller L the magnetic fluxes are smaller than the
above estimate but the magnetic fields are higher.
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4 Conclusion

In this paper we have analysed the thermoelectric effects
in superconducting nanostructures. When the size of a
thermoelectric circuit is smaller than the charge imbal-
ance length, the very physical picture of the thermoelec-
tric effects becomes different from that considered earlier
for macroscopic systems. Indeed, the quasiparticle ther-
moelectric current rather than being offset locally by the
supercurrent, is short-circuited nonlocally by the diffusion
current in the branch closing the circuit. (Here one finds
a certain similarity to the physical picture of the thermo-
electric effect in thermoelectric loops made of two different
normal metals.) The magnitude of thermoelectric effects
in superconducting nanostructures may be comparable
with that in systems of a macroscopic size. At the same
time, the masking effects inherent for macroscopic super-
conductors can be eliminated so that nanoscale structures
are promising for studying the thermoelectric effects in
superconductors. In accordance with our estimates, the
thermoelectric flux may be in the range ΦT ∼ 10−3Φ0,
the value that should be readily measured by a SQUID-
magnetometer.

For the thermoelectric effects to be detectable, the
temperature drop must be large enough. However, even if
a superconducting microstructure is deposited on a glass,
it is still difficult to create a comparatively large tem-
perature difference within a microcontact for the last is
very small. One of the ways to circumvent this difficulty
is to create electron temperature difference that may be
much higher compared to the lattice temperature (see Ap-
pendix A). An important advantage of the nanobridge ge-
ometry is the possibility to have a large drop of an elec-
tron temperature Te — similarly to a possibility to have
a large voltage drop in a point contact [31]. In both cases,
the relaxation of the nonequilibrium distribution func-
tion (related to the voltage or temperature drop) takes
place deep in the bulk of the banks rather than within the
nanobridge itself, provided the inelastic relaxation length
is much larger than the size of the bridge. We have already
mentioned that thermoelectric effects in hybrid normal
metal-superconductor nanostructures related to the elec-
tron temperature drops were experimentally studied in a
number of papers [16–27]. However in the latter studies
the electron heating was produced by Joule effect due to
external current. In our case any external current can pro-
duce a magnetic field which can imitate the thermoelectric
flux. Thus we believe that to prevent such a masking effect
one can thermally excite the electron system of the one
of the banks with the help of a tunnel junction. In this
case each of the tunnelling electrons can create eV/2Te

electron-hole pairs, V being the tunnelling bias (see Ap-
pendix B for details). As a result, for a large enough bias
one can obtain large values of Te resulting from weak tun-
nel currents which do not interfere with the thermoelectric
flux measurement.

Another interesting way of creating a comparatively
large temperature and easily controllable temperature dif-
ference within a microstructure is to deposit in its vicin-
ity a bimetallic stripe of two normal metals with the

electric current through the stripe. Due to the Peltier ef-
fect, the heat will be released within one of the contacts
between the metals and absorbed within the the other one,
thus creating a temperature difference. Again, we expect
to treat this situation in detail elsewhere.

The authors acknowledge support for this work by the grant of
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partial support for this work by the Russian National Founda-
tion for Basic Research, grant No. 03-02-17638.

Appendix A: Temperature distribution

The purpose of this section is to discuss the conditions
when one can ascribe different temperatures to electrons
in two banks connected by a short bridge.

In recent years it has been demonstrated that the elec-
tronic temperature of a metal film may substantially dif-
fer from the lattice temperature of the dielectric substrate.
For quasi-2D metallic nanostructures at low temperatures,
there are two factors that are favourable for such a possi-
bility. First, small electron-phonon collision rates prevent
effective transfer of heat to the phonon system of the sub-
strate. Second, the phonon heat conductivity of the sub-
strate at small spatial scales turns out to be smaller than
the electron heat conductivity within the films since the
phonon mean free path is limited by the spatial inhomo-
geneity. Using the Wiedemann-Franz law, one estimates
the electron heat current within the metal layer of a length
L and cross-section S as

Qel ∼ ∆T

L
SDeñ (26)

where ∆T is the temperature difference, De is electron
diffusivity, and ñ ∼ (T/εF )n is the concentration of quasi-
particles participating in the heat transfer (where n is the
total electron concentration while εF is the Fermi energy).
At the same time, the heat flux from the film to the sub-
strate can be estimated as

Qsub ∼ SLñ∆T

τe-ph

(27)

where τe-ph is electron-phonon relaxation time. From equa-
tions (26), and (27), one sees that Qel > Qsub provided
L2 < levF τe-ph .

It is also instructive to compare the electronic heat
flux Qel with the heat flux Qph supported by phonons in
the substrate and “shunting” the electron flux. One easily
obtains that Qel > Qph provided

L

d

s min(w, lph)
vF le

(
T

TD

)3
εF

T
< 1 (28)

where TD is the Debye temperature of the substrate, w
is the width of the metal layer, d is the layer thickness, s
is the sound velocity while le and lph are the mean free
paths of electrons within the layer and phonons within
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the substrate, respectively. Since the electron heat con-
ductivity dominates provided any of the aforementioned
conditions holds, one concludes that at low temperatures
the electron temperature is mainly controlled by electron
heat conductivity of the metal structure.

Consider now a point ballistic bridge connecting two
metal banks with different electronic temperatures. It fol-
lows from the above considerations that the temperature
drop is concentrated mainly within the contact region. In-
deed, for 3D geometry and a diffusive transport in the
bulk, the temperature distribution in the banks near the
bridge follows the same law as an electric potential distri-
bution, that is the temperature drop is concentrated in the
bridge. If the whole structure is made of a metal film of the
same thickness and with the diffusive electron transport
this statement holds only with a logarithmic accuracy be-
cause of the 2D character of electron diffusion. However
if the thickness of the bridge region is much smaller than
the thicknesses of the banks (that is if the configuration is
a 3D-like one) the temperature drop is again completely
restricted by the contact region. The same holds provided
the electron transport within the contact and near-contact
regions is ballistic. Indeed, it follows from the fact that un-
der the Wiedemann-Franz law the temperature profile is
similar to the electric potential profile while in 2D bal-
listic structures the potential drop is concentrated in the
contact region.

It is expected that very large values of ∆T can be
realised in the point contact geometry. Indeed, one can
apply for the heat flux the same arguments as for electric
current through the point contact [31], namely, that the
relaxation processes for the electrons take place within
the bulk of the sample at distances (∼Deτee)1/2. Thus
enormous values of temperature gradient and heat flux
density do not lead to destruction of the bridge.

Appendix B: Electron heating

Let us consider the important practical question concern-
ing the generation of the temperature gradient across
the bridge. We have assumed above that the excitations
within the one of the banks are heated as compared to
the excitations in another one. Since we deal with super-
conductors, it excludes the Joule heating. On the other
hand, microwave heating implies relatively large areas. In
our opinion, the best way is to heat electrons on one on
the banks using a tunnel S-I-N junction. The junction is
formed by a normal film of area S2 put on the top of the su-
perconducting bank (with a thin insulating layer). When
the bias eV across the S-I-N junction is much larger than
the superconductor energy gap, high-energy electrons tun-
nelling from N layer will relax mainly due to creation of
electron-hole pairs within the superconducting layer. To
have the electron temperature formed, one should have

S2 > vF leτee,

τee being the electron-electron scattering time.

Now let us compare the thermal current from the
heated superconducting layer to the substrate and the
thermal current through the point contact to the “cold”
bank. Assuming that the thickness of the superconducting
layer forming the tunnel junction and the layer forming
the point contact are the same, one finds that the thermal
current through the contact dominates provided

S2L/w < levF τe-ph (29)

where L and w are the point contact length and width,
respectively. If L ∼ w one concludes, that this condition
can hold since at low enough temperatures τe-ph > τee.
Correspondingly, in this case only a region with the area
S2 (under the tunnel junction) is heated with respect to
the rest of the device, the heat leak being due to thermal
current through the point contact. Certainly, one should
also assume that the area of the superconducting layer in
the “cold” bank is large enough to ensure efficient heat
withdrawal to its substrate. In this case one easily obtains

∆T ∼ IV
LεF

wdDenT
(30)

where I is the current through the tunnel junction.
The main conclusion following from the considerations

given above is that it is possible to have “point-like”
electron heating restricted by the area ∼vF leτee. Its lin-
ear dimensions for realistic estimates can be as small as
3 µm. Correspondingly, if the inductance loop has macro-
scopic size this local heating (and corresponding local vari-
ation of the penetration length) is not expected to affect
the temperature-dependent (or rather V -dependent) flux
through the loop.
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